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Abstract: This paper deals with the preventive maintenance (PM) optimization of air-
conditioning systems used aboard regional trains in France by the SNCF (French Railway
Company). Two kinds of PM policies are envisioned: one with a single overhaul in the whole life-
time of the air-conditioning system, another with opportunistic replacements of components
that are too old at each system failure. The air-conditioning system is formed of about 20 ageing
and stochastically independent components. The envisioned PM policies make them function-
ally dependent, however. Both PM optimizations are performed with respect to the same cost
function, involving the mean number of component replacements on some finite horizon. In
view of its numerical assessment, a piecewise deterministic Markov processes (PDMP) model is
used, both to model the maintained and the unmaintained system; a deterministic numerical
scheme is next proposed, based on finite volume (FV) methods for PDMPs; owing to difficulties
in its implementation, an approximation of this scheme is next used, which is much easier to
implement than the initial FV scheme. As a result of using this method, it was finally possi-
ble to optimize both PM policies, which are both proved to lower the cost function of about
7 per cent.

Keywords: multi-unit system, stochastic modelling, preventive maintenance policy,
piecewise deterministic Markov processes, numerical assessment, finite volume scheme,
railway

1 INTRODUCTION

For a railway company such $ as the Société Nationale
des Chemins de Fer (SNCF, French Railway Com-
pany), maintenance of rolling stock constitutes a
major task: a material failure is expensive and causes
customer dissatisfaction. The SNCF has hence initi-
ated research studies in order to model such systems,
in view of their preventive maintenance. This article
deals with an air-conditioning system.

*Corresponding author: Université de Pau et des Pays de l’Adour,
Laboratoire de Mathématiques et de leurs Applications – Pau
(UMR CNRS 5142), Bâtiment IPRA, Avenue de l’Université – BP
1155, 64013, Pau Cedex, France
e-mail: sophie.mercier@univ-pau.fr

The air-conditioning system is a serial/parallel sys-
tem consisting of 17 components. The components’
lifetimes are Weibull distributed, with shape factors
greater than 1, which implies that they are ageing. The
objective is to optimize the air-conditioning mainte-
nance with respect to the maintenance mean cost.
Two different maintenance strategies are tested: a
single overhaul and an opportunistic maintenance
strategy.

Because of the components’ ageing, the usual
Markov processes such as Markov jump processes
cannot be used. Consequently, in order to model
the air-conditioning system, Markov processes called
piecewise deterministic Markov processes (PDMPs)
are used. Those processes are described by Davis
[1, 2]. Their numerical assessment is often established
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by Monte Carlo simulations, see references [3] and [4];
however, with this method it usually takes too much
time to optimize maintenance. The present authors
hence propose an alternate method: first it is observed
that the quantities of interest can be expressed using
PDMP marginal distributions, which are known to
be solutions of a set of partial differential equations
called Chapman–Kolmogorov equations. A finite vol-
ume (FV) scheme is next proposed, which provides
numerical estimates for the PDMP marginal distri-
butions, as a solution of this scheme. The memory
space needed for its implementation is, however, too
large in this instance of the air-conditioning system.
So an approximation of the FV scheme is used, which
reduces the space memory and allows the system of
interest to be quantified. The results found with this
method are compared with those found with Monte
Carlo simulations.

This paper is organized as follows: in section 2,
the air-conditioning system is presented, as well as
the PDMP used to model it and the FV algorithm. In
section 3, the preventive maintenance strategies are
first presented and modelled with PDMPs, and the
associated cost functions are provided, with respect
of the PDMPs marginal distributions. The approxima-
tion method used for their numerical assessment is
next presented. Results are provided in section 4 and
optimal maintenance strategies are determined for
the air-conditioning system. Section 5 provides some
concluding remarks to end the paper.

2 THE AIR-CONDITIONING SYSTEM,
MODELLING, AND QUANTIFICATION
METHODS

This section is devoted to the unmaintained air-
conditioning system, only submitted to corrective
actions.

2.1 The air-conditioning system

Figure 1 describes the air-conditioning system. It has
17 ageing components. Some of them are in active
redundancy and the others are in series. The first part
has two circuits called A and B. There are five com-
ponents on circuit A and five on circuit B. Circuits A
and B are identical. The two branches work together.
When a component on one of these branches fails, the
components on the same branch stop ageing. The sys-
tem crashes if one component in series fails or if one
component on circuit A and one component on circuit
B fail. When the air conditioning stops working, it is
instantly repaired. The restoration consists in instan-
taneously replacing all broken components with new
ones. The components are stochastically independent
but the corrective maintenance strategy makes them
functionally dependent. When a component of part A

Fig. 1 Diagram of the air-conditioning system

or B fails, it is only repaired when another component
of another part of the system fails; this makes com-
ponents of parts A and B dependent upon each other,
and upon components of part S also.

The components lifetimes are Weibull distributed.
The probability distribution function (p.d.f.) of a
Weibull distribution with shape parameter denoted
by β and scale parameter denoted by η is given by for-
mula (1). The Weibull parameters and components
costs are presented in Table 1, which provides fictive
data, because of confidentiality problems. A complete
description of the components has not been included
in the paper, for the same reason. The components’
failure rates are not constant because the lifetime
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Table 1 Weibull distributions coefficients and costs of the
components

Component Shape Scale Cost ( )

S,1 1.5 30 300
S,2 2 20 400
S,3 1.5 80 1000
S,4 2.5 50 800
S,5 1.2 60 250
S,6 2 20 400
S,7 3 40 300
A-B,1 2.5 35 200
A-B,2 1.3 25 1000
A-B,3 2 50 400
A-B,4 1.5 45 300
A-B,5 1.8 20 200

distributions are Weibull’s with a shape parameter
higher than one.

f (x) = β

η

(
x
η

)β−1

e−(x/η)β , ∀x ∈ R+, (1)

2.2 Modelling by PDMP

Piecewise deterministic Markov processes were intro-
duced by Davis in 1984 [1, 2]. This type of modelling
is now used for what Devooght called ‘dynamic reli-
ability’ according to the vocabulary he introduced
for nuclear issues [5]. A PDMP is a hybrid process
(It , Xt )t�0. The first component It is discrete, with val-
ues in a finite state space E . Typically, it indicates the
state – up or down – for each component of the sys-
tem at time t . The second component Xt , with values
in a Borel subset B ⊂ Rd , stands for environmental
conditions, such as temperature, pressure, and in the
present case, the ages of components. This means that
a PDMP can model a system with ageing components.
The two parts It andXt interact one with each other:
the process jumps at countably many isolated random
times; by a jump from (It−, Xt−) = (η, x) to (It , Xt ) =
(σ , y) (with (η, x), (σ , y) ∈ E × B), the transition rate
between the discrete states η and σ depends on the
environmental condition x just before the jump, and is
a function x → a(η, σ , x). Similarly, the environmental
condition Xt just after the jump, is distributed accord-
ing to some distribution µ(η,σ ,x)(dy), which depends
on both components just before the jump (η, x) and on
the after jump discrete state σ . So the transition kernel
which governs the transition between (η, x) and (σ , y)

is b((η, x); (σ , dy)) = a(η, σ , x) µ(η,σ ,x)(dy). Between
jumps, the discrete component It is constant and the
evolution of the environmental condition Xt is deter-
ministic, solution of a set of differential equations
which depends on the fixed discrete state: given that
It = η between two jumps, Xt is solution of

dy
dt

= v(η, y) (2)

Under standard conditions, equation (2) admits a sin-
gle solution such that y(0) = x, which is denoted by
g(η, x, t).

In case B is bounded with boundary Γ, jumps
may also be induced by the reaching at Γ by (Xt )t�0.
When Xt reaches the boundary in (η, x), the after-jump
distribution is then denoted by q((η, x); (σ , dy)).

In the case of the air-conditioning system, com-
ponent It stands for the discrete state of the system.
Setting 0 for a down component and 1 for an up one,
this would lead to a state space equal to {0, 1}17 (0
for down, 1 for up). Owing to the system operat-
ing mode (with instantaneous repairs), the process
actually evolves in a small part E of {0, 1}17, which is
composed of

(a) 1: ‘all the components of the system work’
(b) 1K ,i : ‘the system works, but component (K , i) is

down’ with K ∈ {A, B}
So E = {1, 1K ,i where K ∈ {A, B} and i ∈ {1, . . . , 5}}.

As for the second component Xt of the PDMP, it
describes the ages of all components at time t . There
are 17 components and the system is modelled during
L = 30 years, so that Xt takes the range in [0; L]17.

As all components’ lifetimes are Weibull distributed
with shape parameters greater than one (see Table 1),
the failure rates of the functioning components
depend on their (respective) ages, which increase with
time at speed 1. As for a suspended component (in a
failed branch A or B), it is not ageing any more and its
age evolves at speed 0.

When the system is in the perfect working state 1, all
components are ageing and the solution of equation
(2) hence is

∀x ∈ R17+ , ∀t ∈ R+,

g(1, x, t) = x + t · 1

with 1 the unit vector with 17 components (3)

When the system is in state 1K ,i with K ∈ {A, B}, all
components are ageing except for those which are on
branch K . This provides

∀x ∈ R17+ , ∀t ∈ R+, ∀K ∈ {A, B}, ∀i ∈ {1, . . . , 5}
g(1K ,i , x, t) = x + t εK ,i (4)

with εK ,i ∈ {0, 1}17 such that ε
K ,i
K ,j = 0 for all j ∈

{1, . . . , 5} and ε
K ,i
L,j = 1 for all other component (L, j)

with L �= K .
The process jumps each time a component fails.

Owing to the stochastic independence of the com-
ponents, the failure rate of component (K , i) only
depends on its age xK ,i and is denoted by aK ,i(xK ,i)

with K ∈ {A, B, S}. The possible transitions kernels
then are:
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(a) in case of failure of (K , i) where K ∈ {A, B} with all
other components up

b((1, x), (1K ,i , dy)) = aK ,i(xK ,i)δx(dy)

where δx(dy) stands for the Dirac mass at x
and means that all components’ ages remain
unchanged;

(b) in case of failure of a component in part L when
a component (K , i) is already down, with K ∈
{A, B} and L �= K : both down components are
instantaneously replaced by new ones so that their
ages are reset to zero and the other ones remain
unchanged

b((1K ,i , x), (1, dy))

=
�
(L,j)

L∈{A,B,S}
L �=K

aL,j(xL,j)δ0(dyK ,i)δ0(dyL,j)

�
(M ,k)/∈{(K ,i),(L,j)}

δxM ,k (dyM ,k)

(c) in case of failure of a component in part S, which
is instantaneously replaced by a new one

b((1, x), (1, dy))

=
�
(S,i)

aS,i(xS,i)δ0(dyS,i)
�

(M ,j)�=(S,i)

δxM ,j (dyM ,j)

Thisachieves themodellingof theair-conditioning
system by a PDMP.

In order to optimize the air-conditioning system
maintenance, the mean maintenance cost of this sys-
tem under the two envisioned maintenance strategies
has to be computed. This quantity may be expressed in
terms of the marginal distribution of the PDMP. More
specifically, let πt (η, dx) stand for the distribution of
(It , Xt ) at time t . All the quantities of interest for the
cost function may then be expressed with respect to
πt (η, dx) in shapes provided by equations (5) and (6).

E[f (It , Xt )] =
�
η∈E

�

Rd

f (η, x)πt (η, dx) (5)

t�

0

E[f (Is, Xs)]ds =
t�

0

�
η∈E

�

Rd

f (η, x)πs(η, dx)ds (6)

For instance, the cost function involves the mean
number of system failures Nd(t) occurring before time

t , which is given in equation (7).

E[Nd(t)] =
�
(K ,i)

K ∈{A,B}

t�

0

�

[0;30]17

a(1, 1K ,i , x)πs(1, dx)ds

+
t�

0

17�

[0;30]
a(1, 1, x)πs(1, dx)ds

+
�
(K ,i)

K ∈{A,B}

t�

0

�

[0;30]17

a(1K ,i , 1, x)π (7)

with

a(1, 1, x) =
�
(S,i)

aS,i(xS,i),

a(1K ,i , 1, x) =
�
(L,j)
L �=K

aL,j(xL,j) ∀K ∈ {A, B},

and

a(1, 1K ,i , x) = aK ,i(xK ,i)

There is no explicit expression for the PDMP marginal
distribution πt (η, dx), so it has to be numerically esti-
mated. A FV algorithm is next presented, for that
purpose.

2.3 The FV algorithm

Using the fact that a PDMP is a Markov process
(with general state space), the associated Chapman–
Kolmogorov equation may be written, as displayed in
equation (8), see reference [6] for more details.

∀t ∈ R+, ∀φ ∈ C1
c (E × Rd),

t�

0

�
η∈E

�

Rd

�
σ∈E

a(η, x, σ)

×




�

Rd

φ(σ , y)µ(η,x,σ)(dy) − φ(η, x)


 πs(η, dx)ds

+
t�

0

�
η∈E

�

Rd

v(η, x) · ∇φ(η, x)πs(η, dx)ds

−
�
η∈E

�

Rd

φ(η, x)πt (η, dx)

+
�
η∈E

�

Rd

φ(η, x)π0(η, dx) = 0 (8)
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This equation represents some balance in terms
of probability flows, which takes into account both
of the deterministic evolution between jumps (which
evolves with speed v(η, x)) and the jumps (governed
by a(η, x, σ)µ(η,x,σ)(dy)). Finite volume methods are
known to be well adapted for their numerical resolu-
tion [7–9]. Their principle is based on the discretiza-
tion of both time and environmental state spaces. The
time evolution of the probability masses in each cell
of the environmental state space is followed (time)
step by step and, at each step, some balance is written
between the out- and in-coming probability masses.
The FV algorithm proposed in the current paper com-
putes an approximation of πt (η, dx) which admits a
density π̄t (η, x) with respect of Lebesgue measure,
constant on each time step and each cell of the
environmental state space.

To be more specific, a regular mesh D of [0, L]d
is considered, where [0, L]d is divided into regular
cells of the shape M = [m1 · h; (m1 + 1) · h[× · · · ×
[md · h; (md + 1) · h[, with h the discretization step
and (m1, . . . md) ∈ Nd . The time step is taken equal
to δt and the constant value of π̄t (η, x) when n · δt �
t < (n + 1) · δt and x ∈ M is denoted by un(M , i).

The FV algorithm is first initialized by

u0(M , η) = 1

hd

�

M

π0(η, dx) ∀η ∈ E ∀M ∈ D

where hd stands for the volume of the cell M and
π0(η, dx) for the initial distribution of the process
(It , Xt )t>0.

New notation needs to be introduced to write the
evolution of the probability masses between step n
and step n + 1. In this way, let

aη,σ
M ,N = 1

hd

�

M




�

N

b((η, x), (σ , dy))


dx

∀η, σ ∈ E2 ∀M , N ∈ D2

stand for the discrete transition rate between the cells
(η, M ) and (σ , N ) and let

λ
η

M =
�
j∈E

�
N∈D

aη,σ
M ,N ∀η ∈ E ∀M ∈ D

stand for the discrete exit rate from the cell (η, M ).
In the FV algorithm, the replacements make masses

return to zero and the ageing makes the masses move
from one cell to adjacent cells in one time step. For
M = [m1 · h; (m1 + 1) · h[× · · · × [md · h; (md + 1) · h[
and N = [n1 · h; (n1 + 1) · h[× · · ·×[nd · h; (nd + 1) · h[
such that nk = mk + 1 for some k ∈ {1, . . . , d} and
nl = ml for all other l, the probability mass moves
from M to N and from N to M with respective speeds

vη

M ,N = 1 and vη

N ,M = −1. If M and N are not adjacent,
let vη

N ,M = 0.
Let NM be the neighbouring cells of M . The FV

algorithm is written as follows

∀η ∈ E , ∀M ∈ D,

un+1(M , η)

=

1 − δt


 �

N∈NL

1
h

1vη

M ,N =1 + λ
η

M





 un(M , η)

− δt
�

L∈NM

1
h

un(N , η)1
vηi

M ,N =−1

+ δt
�
σ∈E

�
N∈D

aj,η
N ,M un (N , σ) (9)

A sufficient condition for this algorithm to be stable is
that the coefficient of un(M , η) is non-negative, which
here is written as

1 − δt


 �

L∈NK

1
h

1vη

M ,N =1 + λ
η

M


 � 0 (10)

In all the following, the time discretization step δt
is taken as the maximum value that makes the algo-
rithm stable and is given by an equality in condition
(10). The computation time and the required memory
space consequently depend on one single parameter:
the discretization step h of the environmental state
space.

The issue with the previous FV scheme is that the
memory space needed for its implementation can be
important. If the discretization step of the environ-
mental state space (h) is one, we have to keep in
memory 3017 values per each system discrete state.
To reduce that number, one idea would be to iso-
late independent components. However, even if the
components are assumed to be stochastically inde-
pendent, the corrective maintenance strategy makes
them functionally dependent, as already described.
No component can hence be isolated and the dimen-
sion of the environmental state space cannot be
reduced in that way. An approximation must there-
fore be used, in order to reduce the required memory
space.

2.4 Approximation of the FV algorithm

For sake of simplicity, in all the following, un(M , η)

is used to denote for all M = [x1; x1 + h[× · · · ×
[xd ; xd + h[ and x = (x1, . . . , x17).

The aim of the approximation is to reduce the com-
putations of the multidimensional un(x, η) to one-
dimensional functions. To do that, the cells of the
mesh D are first grouped into sets of cells denoted
by S (see Fig. 2 for an illustration in dimension 2).
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Fig. 2 Illustration of the approximation

For each cell M = [x1; x1 + h[× · · · × [xd ; xd + h[ in S
and each η in E , un(x, η) is then written as the prod-
ucts of functions which depend on S, see equation
(11) just below. Alternatively, un(x, η) can be written
as a sum of functions which all are zeros except from
a single one, which corresponds to the group S, see
equation (12).

un(x, η) ≈
d∏

j=1

vC ,j
n (xj , η), ∀η ∈ E , ∀M ∈ C with C ∈ S

(11)

un(x, η) ≈
∑
G

d∏
j=1

vG,j
n

(
xj , η

)
, ∀η ∈ E , ∀M ∈ D, (12)

where vG,j
n (xj , η) = 0 if M /∈ G.

To better understand the method, it is now
described in the bi-dimensional case with a single dis-
crete state. This discrete state is hence omitted and the
point is to see how to approximate un(x) = un(x1, x2).
The physical variable is assumed to evolve in space
[0; L]2.

The cells of the mesh are here grouped into four
groups G, G ∈ {1, 2, 3, 4}. These can be seen in Fig. 2.
On each of those groups, the approximation consists

in writing un(x1, x2) as the product of two functions
dependent on G, one per component.

If x = (x1, x2) is in group G, G ∈ {1, 2, 3, 4}

un(x1, x2) ≈ vG,1
n (x1)vG,2

n (x2), ∀(x1, x2) ∈ G (13a)

If x = (x1, x2) is not in group G, vG,1
n (x1)v

G,2
n (x2) = 0.

Equation (12) also can be written as

un(x1, x2) ≈
4∑

G=1

vG,1
n (x1)vG,2

n (x2), ∀(x1, x2) ∈ D,

(13b)

The algorithm (9) may be written in a simpler form

un+1(x1, x2) =
∑

(y1,y2)∈D

b[(y1, y2), (x1, x2)]un(y1, y2),

∀(x1, x2) ∈ D, (14)

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 by Sophie Mercier on July 17, 2012pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


Piecewise deterministic Markov processes and maintenance modelling 205Piecewise deterministic Markov processes and maintenance modelling 7

Substituting equation (13b) into (14) provides

vG,1
n+1(x1)v

G,2
n+1(x2)

=
4∑

H=1

∑
(y1,y2)∈H

b[(y1, y2), (x1, x2)]vH ,1
n (y1)vH ,2

n (y2),

∀(x1, x2) ∈ G, ∀G ∈ {1, 2, 3, 4} (15)

A way to calculate vH ,1
n (y1) and vH ,2

n (y2) has to be
found. Group G is defined as the product of two sets
IG
1 × IG

2 . Let

CG,1
n =

∑

x1∈IG
1

vG,1
n (x1) =

and CG,2
n =

∑

x2∈IG
2

vG,2
n (x2) =, ∀G ∈ {1, 2, 3, 4} (16)

Summing equation (15) over x2 in IG
2 gives

vG,1
n+1(x1)C

G,2
n+1

=
∑

x2∈IG
2

4∑
H=1

∑
(y1,y2)∈H

b[(y1, y2), (x1, x2)]vH ,1
n (y1)

vH ,2
n (y2), ∀x1 ∈ IG

1 , (17)

Let

f G,1
n (x1) = vG,1

n (x1)CG,2
n and CG

n = CG,1
n · CG,2

n (18)

Equation (17) may now be written as

f G,1
n+1(x1) =

∑

x2∈IG
2

4∑
H=1

∑
(y1,y2)∈D

b[(y1, y2), (x1, x2)]

× f H ,1
n (y1)f

H ,2
n (y2)

CG
n

, ∀x1 ∈ IG
1 (19)

Also, summing over x1 in IG
1 in the left equality of (18)

provides

CG
n =

∑

x1∈IG
1

f G,1
n (x1), ∀x1 ∈ IG

1 (20)

The functions f G,1
n and CG

n can now be iteratively
computed using equations (19) and (20).

A similar method may be used with as many groups
as wanted and in higher dimensions too. The larger
the number of groups used is, the more accurate
the approximation will be. For the air-conditioning
system, the approximation consists in writing the esti-
mation of the PDMP marginal distributions as the
product of 17 functions for each state. The approxi-
mation simplest case is used in the following, which

consists in taking one single group of cells. The
approximation then becomes

un(x, η) ≈
17∏

j=1

vj
n(xj , i), ∀M ∈ D,

with M = [x1; x1 + h[× · · · × [x17; x17 + h[ (21)

Thanks to the previous method, the quantities use-
ful for the computation of the maintenance mean
cost can be estimated. The preventive maintenance
policies are presented in the next section.

3 THE PREVENTIVE MAINTENANCE POLICIES
FOR THE AIR-CONDITIONING SYSTEM

3.1 The preventive maintenance strategies

Two types of maintenance are envisioned as described
below.

Case 1 The first one is based on a single overhaul,
and during this review, the components which are
older than a specific limit age are replaced, in addi-
tion to the broken components. Such overhauls are
classically used in industry and are used by the SNCF
for the maintenance of air-conditioning systems. A
major interest for such a PM is that it is planned in
advance, which allows repair-men and spare compo-
nents to be prepared beforehand. Typically, in such
an overhaul, only broken and overly degraded compo-
nents are changed, where the degradation threshold
for a degraded component is here modelled through
a control limit age. To optimize this strategy for the
air-conditioning system, 13 parameters have to be
determined: one is the time at which the overhaul is
executed, and the other ones correspond to the com-
ponents’ limit ages. In the present instance there are
only 12 limit ages to find because the five limits on
part A are the same as the limits on part B.

Case 2 The second one is an opportunistic main-
tenance strategy: the point is to take advantage of
a system failure for simultaneously changing overly
degraded components, in addition to the broken com-
ponents. Here again, the degradation threshold is
modelled through a control limit age. The main inter-
est of such a strategy is that preventive maintenance
actions are performed at the same time as corrective
ones. This allows time and money to be saved, for
the system need not be stopped specifically for PM
actions and the repair staff need not attend specifi-
cally for them either. To optimize this strategy for the
air-conditioning system, 12 components’ limit ages
have to be determined, just as for the case of a single
overhaul.
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3.2 Modelling of the preventive maintenance
strategies

Both envisioned PM policies can be modelled with a
PDMP, with a slight modification of the initial PDMP
presented in subsection 2.2.

Case 1 If the overhaul is executed at time T , a new
physical variable must be created that represents the
time since entry into service. Reaching T for this new
variable entails some system change of states and T
then acts as a boundary for this new variable. Note that
once T is reached, it is no longer needed. At time T ,
thecomponents’ agesare reset tozero if theyareabove
their limit age denoted by T (K , i) for K ∈ {A, B, S}. The
transition kernels due to the transitions induced by
the reaching of time T are

q[(1, x, T ); (1, dy)]
=

∏
K ,i

[δ0(dyK ,i)1xK ,i�TK ,i + δxK ,i (dyK ,i)1xK ,i<TK ,i ]

(22)

q[(1K ,i , x, T ); (1, dy)]

= δ0(dyK ,i)
∏

(L,j)�=(K ,i)

(
δ0(dyL,j)1xL,j�TL,j +
δxL,j (dyL,j)1xL,j<TL,j

)
,

∀K ∈ {A, B}, (23)

Case 2 To model the opportunistic maintenance pol-
icy, there is no need to create a new physical variable.
Again, let T (K , i) be the limit age of the component
(K , i). Equation (24) provides the transition kernel of
the process when a component of branch A or B is
already down when the system crashes. Equation (25)
provides it when a component of part S causes the
system to crash with all other components up.

∀K ∈ {A, B},
b[(1K ,i , x), (1, dy)]

=
∑
(L,j)

L∈{A,B,S}
L �=K

aL,j(xL,j)δ0(dyK ,i)δ0(dyL,j)

∏
(M ,K )�∈{(K ,i),(L,j)}

(
δ0(dyM ,k)1xM ,k�TM ,k +
δxM ,k (dyM ,k)1xM ,k<TM ,k

)
(24)

b[(1, x), (1, dy)]
=

∑
(S,i)

aS,i(xS,i)δ0(dyS,i)

∏
(K ,j)�=(S,i)

[δ0(dyK ,j)1xK ,j�TK ,j + δxK ,j (dyK ,j)1xK ,j<TK ,j ]

(25)

Table 2 Cost of maintenance

Overhaul cost ( ) Corrective maintenance cost ( )

500 2000

To optimize the system maintenance, the overhaul
time and the limit ages of the components that min-
imize the maintenance mean cost should now be
found for both strategies.

3.3 Maintenance optimization

Table 2 provides the costs of the overhaul and correc-
tive maintenance. When the overhaul or a corrective
maintenance occurs, it costs respectively 500 and
2000 in addition to thereplaced components costs,
see Table 1.

The objective is to find the maintenance strategy
that minimizes the maintenance mean cost of the
system over 30 years, which includes the following
costs:

(a) Cd : system failure cost, see Table 2;
(b) CK ,i : replacement cost of component (K , i), with

K ∈ {A, B, S}, see Table 1;
(c) Co: overhaul cost, see Table 2 (for the opportunis-

tic maintenance strategy, there is no overhaul so
Co = 0).

Other notation is also used in the following:

(a) Nd(t): mean number of system failures occurred
before t ;

(b) NK ,i(t): mean number of component (K , i)
replacements occurred before t , with K ∈
{A, B, S}.

The cost function is then given by

C(t) = Cd Nd(t) +
7∑

i=1

CS,i NS,i(t)

+
5∑

i=1

[CA,i NA,i(t) + CB,i NB,i(t)] + Co (26)

Because of the number of parameters to be optimized
(12 and 13), it is not possible to test all the possibili-
ties and a simulated annealing algorithm is used, see
reference [10]. Each possibility is computed using the
approximation of the FV algorithm (with one single
group G).

4 THE RESULTS FOR THE AIR-CONDITIONG
SYSTEM

For the computations, the discretization step of the
environmental state space, h, is taken as equal to one
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month (1/12). Table 3 shows the component opti-
mal replacement limit ages. To find these strategies,
the simulated annealing algorithm had to do between
200 and 300 tests. To accelerate the calculations,

Table 3 Optimal strategies to minimize the mean cost

Limit ages of replacement

Preventive maintenance Opportunistic
Component at 16 years maintenance

S,1 6 16
S,2 4 8
S,3
S,4 Do not replace Do not replace
S,5
S,6 5 8
S,7 11 16
A-B,1 14 16
A-B,2
A-B,3 Do not replace Do not replace
A-B,4
A-B,5 6 13

Table 4 Results of the mean cost optimization

Mean number
Maintenance strategy Mean cost ( ) of failures

Without preventive or 17 293 6.4
opportunistic maintenance
Preventive maintenance 16 029 (−7.3% ) 4.97 (−22.3% )
Opportunistic maintenance 16 064 (−7.1% ) 5.1 (−20.3% )

a discretization step of the environmental variable
space state equal to four months (1/3) is first used, and
next, when the algorithm approaches the solution, the
step is switched to one month (1/12).

With these strategies, the maintenance mean cost is
reduced by about 7 per cent and the mean number of
failures is reduced by about 20 per cent, see Table 4.
Both strategies here lead to roughly the same number
of failures and the same cost.

It is useful for industrial practice to compare these
different maintenance strategies. An interesting quan-
tity is the Vesely failure rate of the system defined
by (27), see reference [11]. Figure 3 represents an
approximation of the Vesely failure rate of the air-
conditioning system computed with the FV algorithm,
equation (28).

λv(t) = lim
�→0

1
�

P[Nd(t + �) − Nd(t) � 1], ∀t � 0

(27)

λ̄v(t∗) = 1
δt

P[Nd(t∗ + δt) − Nd(t∗) = 1],
∀t∗ ∈ {0, δt , 2δt , . . . , } (28)

The effect of the different maintenance strategies
can be seen in Fig. 3. After 16 years of operation,
the effect of the overhaul can be observed. These
results may now be compared with Monte Carlo
simulations.

Fig. 3 Approximation of the Vesely failure rate of the air-conditioning system over three maintenance
strategies
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Table 5 Mean cost and mean number of system failures under corrective maintenance strategy
(95 per cent CI means 95 per cent confidence interval)

Method Mean cost ( ) Mean number of failures CPU time

Monte Carlo
(105 histories)

17 166
95% CI = [17 136; 17 196]

6.35
95% CI = [6.339; 6.361]

221

Finite volume (h = 1/12) 17 293 6.4 25
Finite volume (h = 1/3) 17 492 6.48 3

Table 6 Mean cost and mean number of system failures under the optimal overhaul, (95 per
cent CI means 95 per cent confidence interval)

Method Mean cost ( ) Mean number of failures CPU time

Monte Carlo
(105 histories)

16002
95% CI = [15 973; 16 032]

4.902
95% CI = [4.89; 4.913]

725

Finite volume (h = 1/12) 15992 4.97 24
Finite volume (h = 1/3) 16164 5.03 4

Table 7 Mean cost and mean number of system failures under the optimal opportunistic
maintenance strategy, (95 per cent CI means 95 per cent confidence interval)

Method Mean cost ( ) Mean number of failures CPU time

Monte Carlo
(105 histories)

15 772
95% CI = [15 743; 15 800]

4.824
95% CI = [4.814; 4.835]

1342

Finite volume (h = 1/12) 16 064 5.1 51
Finite volume (h = 1/3) 16 165 5.12 13

4.1 Precision of the results

There are two parameters which influence the pre-
cision of the results. The first parameter is the dis-
cretization step of the environmental variable state
space h and the second is the number of sets used for
the approximation. For this study, the second param-
eter is fixed to one. Two different values of h are tested:
one month (1/12) and four months (1/3).

In order to verify the results found with the FV
algorithm, they are compared to those found with
Monte Carlo simulations. 105 histories are simulated.
First, mean cost and mean number of failures of
the air-conditioning system without preventive and
opportunistic maintenance are computed with both
methods. Table 5 shows the results found with these
two methods. They are similar, so the results found
with the FV algorithm are validated. Computations
with the FV algorithm and a discretization step of 1/3
are executed in 3 s; it is fast enough to use the FV
algorithm to optimize the maintenance.

In Table 6, mean cost and mean number of failures
associated with the optimal overhaul are verified. The
results found with the FV algorithm (h = 1/12 and
h = 1/3) and those found with Monte Carlo simu-
lations (105 histories) are compared. They are fairly
close, so in this case the approximation used in the FV
algorithm gives precise results.

Table 7 is the same as Table 6, but the results
are associated with the optimal opportunistic main-
tenance strategy. In this case, the results are less
accurate than with the overhaul. A possible expla-
nation is that the opportunistic maintenance strategy
causes a greater dependence between the component
ages. The approximation used with only one group
assumes some kind of independence, which is not
the case. So, in order to have more precise results,
a greater number of sets for the approximation should
be used.

5 CONCLUSIONS

To conclude, PDMP allows the modelling of com-
plex systems with ageing components under different
maintenance strategies. A computation method has
been proposed which permits the numerical assess-
ment of reliability quantities. This method appears to
be well adapted to the optimization of maintenance
strategies. For the air-conditioning system, an optimal
overhaul and an optimal opportunistic maintenance
strategy have been determined. This methodology can
be used for many systems. However, limitations are
the number of ageing components and the system
complexity. In future, The authors will try to apply
this method for more complex systems.

Proc. IMechE Vol. 225 Part O: J. Risk and Reliability

 by Sophie Mercier on July 17, 2012pio.sagepub.comDownloaded from 

http://pio.sagepub.com/


Piecewise deterministic Markov processes and maintenance modelling 209Piecewise deterministic Markov processes and maintenance modelling 11

© Authors 2011

REFERENCES

1 Davis, M. H. A. Piecewise Deterministic Markov Pro-
cesses: a general class of non-diffusion stochastic mod-
els. J. R. Statist. Soc. (B), 1984, 46, 353–388.

2 Davis, M. H. A. Markov models and optimization, 1993
(Chapman and Hall).

3 Zhang, H., Dufour, F., Dutuit, Y., and Gonzalez, K.
Piecewise deterministic Markov processes and dynamic
reliability. Proc. IMechE, Part O: J. Risk and Reliability,
2008, 222(4), 545–551. DOI: 10.1243/1748006XJRR181.

4 Labeau, P. E. A Monte Carlo estimation of the marginal
distributions in a problem of probabilistic dynamics.
Reliability Engng System Saf., 1996, 52, 65–75.

5 Devooght, J. Dynamic reliability. Adv. Nucl. Sci. Tech-
nol., 1997, 25, 215–178.

6 Cocozza-Thivent, C., Eymard, R., Mercier, S., and
Roussignol, M. Characterization of the marginal distri-
butions of Markov processes used in dynamic reliability.
J. Appl. Math. Stochastic Analysis, 2006, 1–18.

7 Mercier, S. Modèles stochastiques et méthodes
numériques pour la fiabilité. HDR Thesis, Université
Paris-Est Marne-la-Vallée, 2008, (in French).

8 Cocozza-Thivent, C., Eymard, R., and Mercier, S. A
finite volume scheme of dynamic reliability models. IMA
J. Numerical Analysis, 2006, 26(3), 446–471.

9 Eymard, R., Mercier, S., and Prignet, A. An implicit vol-
ume scheme for a scalar hyperbolic problem with mea-
sure data to piecewise deterministic Markov processes.
J. Comput. Appl. Math., 2008, 222, 293–232.

10 Duflo, M. Algorithmes stochastiques, 1999 (Springer) (in
French).

11 Cocozza-Thivent, C. Processus stochastiques et fiabilité
des systèmes, 1997 (Springer) (in French).

APPENDIX

Notation

a(η, σ , x) PDMP transition rate between the
discrete states η and σ when the
environmental condition is x

d dimension of the environmental
state space

D regular mesh of Rd

FV finite volume
hd volume of cell M
It PDMP discrete part at time t
p.d.f. probability distribution function
q((η, x); (., dy)) PDMP after-jump distribution

starting from (η, x) in the
boundary �

M cell of mesh D
PDMP piecewise deterministic Markov

process
PM preventive maintenance
SNCF Société Nationale des Chemins de

Fer (French National Railway
Society)

β Weibull shape parameter
η Weibull scale parameter
� boundary of the PDMP state space
δt time discretisation step for FV
δx(dy) Dirac distribution at x
µ(η,σ ,x)(dy) distribution of the after-jump

location for Xt by a jump of It from
η to σ , when the environmental
condition before the jump is x

πt (., dx) PDMP distribution at time t
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